
AD-A284 871IhIIIhIIEIA1111111-
TASK: UU03
CDRL: 05156

Eabruary 1993

Reuse Library Framework
Modeler Tutorial

DTIC
Informal Technical Data S LEP 2 61994

I F

This document b•as been approved
for public release and sale; its
distribution is unlimited.

STARS-UC-05156/020/00
February 1993

S 94-3082494- • 0 0Z llllilrllll~lllrllill

S I

TASK: U03

CDRL: 05156
February 1993

INFORMAL TECHNICAL REPORT

For The

SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE SYSTEMS
(STARS)

RLF Modeler Tutorial

STARS-UC-05156/020/00
February 1993

Data Type: A005, Informal Technical Data NTIS A k=

CONTRACT NO. F19628-88-D-0031
Delivery Order 0011 ,.

Prepared for: . t , . .

Electronic Systems Center . . .
Air Force Systems Command, USAF -

Hanscom AFB, MA 01731-5000 D, -

Prepared by:

Paramax Systems Corporation
12010 Sunrise Valley Drive

Reston, VA 22091

DTIC QUALITY IMSPECTED 3

TASK: UJ03
CDRL: 05156
February 1993

Data ID: STARS-UC-05156/020/00

Distribution Statement "A"
per DoD Directive 5230.24

Authorized for public release; Distribution is unlimited.

Copyright 1993, Paramax Systems Corporation, Reston, Virginia
Copyright is assigned to the U.S. Government, upon delivery thereto, in accordance with

the DFAR Special Works Clause.

Developed by: Paramax Systems Corporation

This document, developed under the Software Technology for Adaptable, Reliable Systems
(STARS) program, is approved for release under Distribution "A" of the Scientific and Tech-
nical Information Program Classification Scheme (DoD Directive 5230.24) unless otherwise
indicated. Sponsored by the U.S. Defense Advanced Research Projects Agency (DARPA)
under contract F19628-88-D-0031, the STARS program is supported by the military services,
SEI, and MITRE, with the U.S. Air Force as the executive contracting agent.

Permission to use, copy, modify, and comment on this document for purposes stated un-
der Distribution "A" and without fee is hereby granted, provided that this notice appears
in each whole or partial copy. This document retains Contractor indemnification to The
Government regarding copyrights pursuant to the above referenced STARS contract. The
Government disclaims all responsibility against liability, including costs and expenses for vi-
olation of proprietary rights, or copyrights arising out of the creation or use of this document.

In addition, the Government, Paramax, and its subcontractors disclaim all warranties with
regard to this document, including all implied warranties of merchantability and fitness, and
in no event shall the Government, Paramax, or its subcontractor(s) be liable for any special,
indirect or consequential damages or any damages whatsoever resulting from the loss of use,
data, or profits, whether in action of contract, negligence or other tortious action, arising in
connection with the use or performance of this document.

TASK: U03
CDRL: 05156
February 1993

INFORMAL TECHNICAL REPORT
RLF Modeler Tutorial

Principal Author(s):

Jim Solderitsch Date

Approvals:

Task Manager Richard E. Creps Date

(Signatures on File)

TASK: U03
CDRL: 05156
February 1993

INFORMAL TECHNICAL REPORT
RLF Modeler Tutorial

Change Record:

Data ID Description of Change Date Approval
-'TRS-UC-05156/020/00 Reissued: Minor changes to February 1993 on file

accompany RLF v4.1 releame
STARS-UC•05156/010 00 Original Issue November 1992 on file

REPORT DOCUMENTATION PAGE M No.m 0704-0188

gatetrime are maisnta11.riq Ith cats no".ae and coameeting an@ re 11.q - V .itfopfattori $*n aria c Om nts r.;aira 7 1 ojropniestmaecan traocIC
(olletion :f ifor~l ler. l I ncn. ouinI su gt~onfis for reauting this, ouefif' t. vas.ý,r :n -ifsoovafers Seivices. Directorate 'or mi~.,ir owse amis no ton s eei 12 is ji"Pte

C-Asit, yst9-oaq. Suite 120A Arlorgtcrr. ir,22f02.d302. sniffto pq Offc lslansaf-i-t arde uagoi. facefworit AfoiinPcj: C.18 WAti'iialoi. C- 2US03

1. AGENCY USE ONLY (Leaeo blank) 311TP~i DATE 3. REPORT TYPE AND DATES COVERED
I Informal Technical Report

4, TITLE AND SUBTITLE T5. FUNDING NUMB3ERS

RLF Modeler Attorial F19628-88-D-0031

7. PERFORMING ORGANIZATON NAME(S AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Paramax Corporation STARS-UC-05 156/020/00
1210 Sunrise Valley Drive
Reston, VA 22090

3. SPONSORtINGIMONITONING. AGENCY NAME(S) AND AODRESS(ES) 10. SPONSORING.- MONITORING
AGENCY REPORT NUMBER

Department of the Air Force 05156
Headquarter, Electronic Systems
Hanscom AFB, MA 01 731-5000

11. SUPPLEMENTARY NOTES

12a.DISRIBUION AVILABLIT STAEMET 1b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This package is part of an evolving series of orientation packages that constitute a com-
prehensive RLF training program. Eventually, this program will include material for three
distinct categories of RLF users:

e end users of RLF-based applications, concentrating on those employing the RLF Graph-
ical Browser (RLF GB);

0 maintainers and administrators of RLF-based applications and in particular the un-
derlying knowledge bases on which the applications depend for much of their power;

e RLF model developers and application designers.

14. SUBJECT TERMS 15. NUMOBER OF PAGES
80

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT I OF THIS PAGE I OF ABSTRACT
Unlcassified I Unclassified IUnclassified SAR

NSN 7540-01.-280-5500 :*' 98 1Q0v 7.89'

February 1993 STARS- UC-05156/020/00

1 Introduction

The RLF is a knowledge-based system, developed by Paramax with support by the STARS
program, whose primary application has been the design, implementation, and deployment
of domain-specific reuse library systems. A reuse library supports software engineers by
enabling them to quickly locate software assets (e.g. requirements, designs, code modules,
test plans etc.) that can be of use in their construction of a software system.

What Is the RLF?

* RLF stands for Reuse Library Framework.

SlIde I e The RLF is a system, written in Ada, that enables the

creation of knowledge-based systems.

e In particular, the RLF has been applied to the

creation of domain-specific reuse libraries.

A domain is an application area, typically the one of immediate relevance to the software en-
gineer, and a domain model is a machine representation of information about the application-
area and the library assets available for the application area. The model can contain general
domain information along with data about the form, fit, and function of the available library
assets.

This package is part of an evolving series of orientation packages that constitute a com-
prehensive RLF training program. Eventually, this program will include material for three
distinct categories of RLF users:

* end users of RLF-based applications, concentrating on those employing the RLF Graph-
ical Browser (RLF GB);

* maintainers and administrators of RLF-based applications and in particular the un-
derlying knowledge bases on which the applications depend for much of their power;

* RLF model developers and application designers.

Page 1

February 1993 STA RS- U:-05156/020/00

During the first part of this modeling orientation, a survey of domain analysis and modeling
activities and concepts is presented (see SLIDE 2) with a focus on how these activities fit into
a basic system development process framework that is a joint product of the three STARS
Prime contractors.

Overview
Basic Modeling Concepts

* Introduction
Slide 2

* Domain Analysis and Modeling Context

e STARS CFRP

* Advantages of an RLF-like approach

During the second part of the orientation, the emphasis shifts to showing how RLF capa-
bilities support the requirements and opportunities afforded by a careful domain analysis
(see SLIDE 3) with a focus on how the RLF supports the production and representation of
domain models.

Overview (cant)
RLF Modeling Capabilities

"* AdaKNET semantic networks and LMDL
Slide 3

"* Hybridization -- attributes and inferencers

"* Asset Processing -- defining RLF actions

"* Modeling Suggestions

Page 2

February 1993 STARS-UC-05156/020/0V

The third part (SLIDE 4) is structured to accompany a demonstration of using the RLF to
create, modify and maintain a working library for a simple application domain.

Overview (cont)
RLF Model Development

* Model Creation

* Model Evolution
Slide 4

* Model Hybridization

* Models and Submodels

* AdaTAU rule-based inference engine and RBDL

- adding user-guidance facilities to a model

All of the model-building activities will address the problem of how to create and evolve
models which focus on the needs of a user community who will interact with a library and
the applications that are based on these models.

While a graphical user interface provides library end-users with convenient and powerful
methods to access assets and the underlying library model, it is not currently possible to build
or modify a library model graphically. Model builders and library maintainers use ordinary
text editors to create and modify RLF model description files which are then processed by
the respective description language processors.

2 Domain Analysis and Modeling Context

The slides and notes contained in this package address how to develop library models that
support the construction of domain-specific reuse libraries. SLIDE 5 lists some reasons to
consider a domain-specific modeling approach.

Page 3

February 1993 STARS-UC-051 56/020/00

Why Domain Models?

"* Widespread belief that reuse is enhanced if done in small,

specialized areas

Slide 5 9 Software is naturally partitioned into "domains"

"* Modeling a software domain structures the collection of assets

"* Domain model forms skeleton for library architecture

" Domain information can be used to aid asset retrieval and more
general kinds of asset processing

Domain knowledge must be put into the hands of engineers who are building systems in
that domain. However, different categories of users may in fact require different views of the
information. Domain analysis is a kind of knowledge engineering and a general discussion of
this topic is beyond the scope of this orientation package. However domain analysts must
have a keen sense of who their user community will be and must organize the information
appropriately. The scheme to store and represent domain knowledge should be powerful, yet
flexible.

The cornerstone of the RLF approach to supporting reuse is the definition and presentation
of supportive domain model information to serve the needs of library users.

Page 4

S I

February 1993 STARS-UC.05156/020/00

What Is Modeling?

Modeling is a process of organizing knowledge about a
domain (a specific portion of reality/thought)

"* Define The Domain.
Slide 6 You must decide exactly what your domain is. You must

know or learn something about it.

"* Organize Domain Knowledge.

You can know a lot about the domain and still find yourself
very challenged. Domain information must be recorded

and categorized.

SLIDE ' indicates some characteristics of models that explain their importance. A model-
based approach is needed to support reuse because reuse embodies a shift in the way that
software engineering is done. Rather than employing the common mindset that assumes
that design is a response to a specific set of requirements, a reuse mindset adopts a balanced
problem - product - process point of view. System development takes place with a clear
grasp of the available software assets that exist within a specified scope of applicability (a
domain). A domain model is a way of articulating the intended scope of reuse for a given
set of software assets.

Important Model Characteristics

a Formal and Representable

Models can clarify, abstract, and organize

Slide 7 knowledge about a domain.

a Machine Processable

Tool support enables automation of tasks and

Knowledge-based tool support enables

reasoning about the domain.

Page 5

February 1993 STARS- U C-05156/020/00

Tool support is necessary because effective reuse will often take place in circumstances that
stress a person's intuitive limits in handling complexity. For these situations, modeling
techniques must be able to capture the complex semantics of the domain. In particular,
sub-system level reuse can be very successful because a greater proportion of an application
is built with reused components. Such reuse requires a modeling capability that describes
the aggregate collections of components into systems.

3 STARS CFRP

Domain analysis and subsequent modeling are activities that fall within a Reuse-Driven sys-
tem development strategy that is addressed by the STARS Conceptual Framework for Reuse
Processes (CFRP). This framework is not a life-cycle model; rather, the CFRP provides a
comprehensive checklist of reuse processes that are meant to work together synergistically
and lead to a transformed system development paradigm. SLIDE 8 provides a high-level
view of the CFRP and SLIDE 9 lists some of the subprocesses that fall within each of the
major categories of tOe CFRP.

Market
Forses

External
Assets oarSlide 6 0 SystemsExisting ...-o
Sygteams Assets
Toole

Organization
Context

P a g e.............

Page 6...::..,.

February 1993 STARS- UC-05156/020/00

Reume Mimagement Reuse Engineerlng
* Reuse Planning * Aset Creation

- Assessment - Domain Analysis and Modeling
- Direction Setting - Software Architecture Development
- Domain Selection - Applation Generator Development
- Inlmiature Plannig - Software Component Developmeat
- Project Planning - Asset Evolution

e Reuse Enactment e Asn Managomwe
- Project Managiement - Asset Acquisition
- Infriaanare Iniplementation - Asset Acceptance

Slide 9 9 Reuse Learning - AssetCatlogiln
- Process Obseivation - Asset Certification
- Process Evaluation - Asset Meonics Collection
- Innovation Exploration - Library Operation
- Rnha-cement Recommendation - Library Data Modeling

Library Metric Collection
-Library Evolution

* Ames Utilization
- Asset Requirements Determination
- Asset Identification
- Asset Selection
- Asset Tailoring
- lntegrati• of Assets with Application

Reuse-based management as captured in the Plan/Enact/Learn idiom and reuse-based engi-
neering as captured in the Create/Manage/Utili ze idiom provide both process and product
evolution strategies as depicted on SLIDE 10.

PIF.L Prove= Idiom C/M/U Process Idiom

REUSE-BASED MANAGEMENT: REUSE-BASED ENGINEERING:

PROCESS EVOLUTION PRODUCT EVOLUTION

Slims 10

With respect to domain analysis and modeling, the Enactment and Planning activities are of
particular interest within the CFRP. SLIDE 11 provides an expanded view of the planning
activities and snows the resources which are taken into account by these activities as well
the products produced by them. For the most part, these are higher-level activities which
are beyond the scope of this orientation package. An organization must, however, consider
these activities in putting together a reuse plan that will be effective for the organization.
To some extent, this plan will be driven by business decisions and will include selection of
domains which support those derisions.

Page 7

February 1993 STARS- UC-05156/020/00

Slide 11 P

Mab" P \ Fo

1'ak NOmWN..mm

Orpam •um (4 nnCA eMOHM eNI

In particuiar, domain analysis intersects broadly with the planning activities of assessment,
direction setting, and of course domain selection. Moreover, the creation of a domain
model is an important aspect of infrastructure planning. Domain selection is an impor-
tant first step to conducting a successful domain analysis. Domain selection should take
place in an expanded reuse planning context. In fact, domain selection is as much a man-
agement/business/strategic decision as it is an engineering decision.

There are many processes that specifically address domain analysis within the area of reuse
planning. Some of them are summarized in SLIDE 12.

Page 8

February 1993 STARS-UC-05156/020/00

Key DA Planning Activities

* Reuse Assessment

- Identify Organization Domains

- Characterize Domains

* Direction-SettingSlide 12

Establish DA Objectives

e Domain Selection and Planning

- Infrastructure Planning
* Select DA Modeling Techniques

* Select Domain Engineering Technology

- Project Planning
Configure Asset Creation Projects

The following bullets expand on the issues raised on the previous slide.

9 Reusc Assessment

- Organizational Assessment - ties into Reusability Analysis

- Domain Identification and Characterization - conducted in a different context
from Organization Characterization

* Direction-Setting

- Domain Analysis Objectives-- in light of

* Overall organizational objectives
* Organizational Reuse Objectives

- Domain Metrics/Criteria for Success

- Select Domain Analysis Methodology

e Domain Selection - Different organizational contexts for domain selection criteria

- Technical criteria

• Stability of domain technology

Page 9

February 1993 STARS- UC-05156/020/00

* Maturity (e.g. number of systems implemented and length of time fielded)

* commonality across applications
* performance constraints

* flexibility of user requirements to accommodate reused resources

- Organizational criteria

* Strategic interest in domain
* Availability of expertise

* Ability to form domain engineering team for this domain (i.e., how much does
it cut across current organizational structure?)

Similarly, SLIDE 13 expands upon the enactment process. Domain analysis and modeling
enable construction of valuable reuse-support structures which aid a successful reuse-based
approach to system development. Not only are assets created, managed and used in the
development of a new system, but the knowledge about these assets and the relationships
among them also undergoes an analogous kind of Create/Manage/Use engineering activity.

Slide 13

Domain analysts build models. These models help engineers understand the application
domain and any existing assets that can be applied to constructing systems within the
domain. The models are themselves valuable assets that must be maintained and modified
(i.e. managed). Asset managers may need to maintain multiple models and update them
as required. Users (i.e. Application engineers) make use of the models in making important
decisions about how to develop solutions to the problems being addressed by the system
under development. Thus, not only are the assets used, but the models are used as well
to understand how to make effective use of the assets. SLIDE 14 lists some of the relevant
activities.

Page 10

' T77 7~' -7" - -`

February 1993 STARS-UC-01 56/020/00

C/M/U and Domain Analysis

* Asset Creator
- domain analyst

* b"l mmodeb

- domain engineer
* bis ompontms
* adds/eoxfs cponMes wn dom=n moW

* Vedm cOmpn wfl modol
Slde14 * Asset Manager

- Asset Qualifier/Ceurfier

- Asset Cataloguer

- Library Model Maintenance/Evolution

- Usage History Monitor

- Promotion of Assets/Commissioning New

Assets

o Asset Utilizer

With respect to the RLF, asset creators make and modify RLF models while asset managers
administer and maintain them. Asset users browse and query RLF models and invoke
applications which make use of them. However, asset creators will also find themselves in
the position of model users (e.g. obtaining, incorporating and tailoring already-built models
of subdomains) while asset users may help create modified RLF models (e.g improved rule-
based heuristics, or identify gaps in model coverage and asset availability).

The creation activity is broken out further in SLIDE 15. In particular, domain analysis can
lead to key decisions about how assets can be created (e.g. composition vs. generation) and
an on-going effort to improve domain information can lead to transitions between forms of
asset support - e.g. from custom construction of subsystems, to (semi-)automatic composi-
tion of systems from available components to parameterized generation of components and
even entire systems. Not only are assets undergoing an evolutionary process, but so to are
the models.

Page 11

February 1993 STARS- UC-05156/020/00

Slide 15

Roo" A \••_• "eW .•

Note that architecture development is distinct from domain modeling per se. A domain
model represents commonality and differences within the "problem space" of the domain
(system features), whereas the architecture represents alternatives in the "solution space".
Architectures that are supportive of reuse differ from ordinary system architectures in that
they might include generative components as well as constructive.

There a number of domain analysis activities within the Create category of the Enact idiom.
These activities produce a wide variety of domain engineering products. These activities are
summarized on SLIDE 16 and the products produced by the activities are enumerated in
the list following the slide.

Page 12

a I

February 1993 STARS- UC-05156/020/00

Key Domain Analysis Activities

e Domain Definition

* Domain Scoping

Slide 16 * Domain Information Gathering

9 Domain Modeling

o Domain Model Validation

* Domain Refinement

* Domain Engineering

The following bullets expand on the activities listed on the previous slide and show some
possible resulting products. The last item on the list, domain engineering, corresponds to
"architecture development" identified on SLIDE 15.

* Domain Definition

- Domain Definition Statement (intensional)

- Domain Exemplar Set, chosen from a range of systems

* Implemented/fielded systems
* Requirements for new systems
* Market studies - forecasts

- Domain Genealogy - Different historical relations between systems

* direct successor system
* leveraged system

* requirements reuse (black-box)
* independently developed

* competitively developed

e Domain Scoping

- Domain Interconnection Model

• Operational Relations - e.g., Domains related through operational interfaces
in end-user system or through implementation relationships

Page 13

February 1993 STARS-UC-05156/020/00

* Specialization/generalization relations - e.g., outlining programs relate-to hy-
pertext programs; these domains are related not because one is used to im-
plement the other, or because they both co-exist and may even exchange
data in a single environment, but because one represents a superset of the
functionality of the other.

* Analogy domains

* Life cycle domains

- Domain Boundary Decision Report

* Domain Information gathering leads to a Domain Information Inventory'

* Domain Modeling

- Domain lexicon

- Requirements-Oriented Feature Model

- Models of environmental characteristics - often much reuse potential hidden

- Feature binding time model

- Error semantics model

- Feature Modeling Principles - Models can begin informally; as they scale up, their
semantics must become clearer; inheritance becomes more useful; feature model
should flag any functions not included in exemplar set

"* Domain Model Validation - done along with information gathering, modeler should
verify terminology is in keeping with the application domain

"* Domain Refinement

- Articulate domain boundaries

- Defer modeling of sub-domains

- Clarify individuals in each domain model

"* Domain engineering - must integrate results of domain analysis with requirements
analysis; also, DA results stand on their own

The Domain Modeling activity in SLIDE 16 is most directly related to the core material of
this orientation. There are many kinds of models which can be produced during this activity,
including several for which the R LF provides a suitable representation medium. Some of
these models are on SLIDE 17.

'Techniques of information-gathering include searching databases, networks, technical communities
ethnography, participants observation of a single engineer's grasp of problems in the domain, group
interviewing

Page 14

February 1993 STARS-UC-05156/020/00

Domain Modeling Products

* Domain Lexicon

Slide 17 * Requirements-Oriented Feature Model

* Models of environmental characteristics

* Feature binding time model

* Error semantics model

A semantic network model is sufficiently general and powerful to capture all of the model
types in the previous list.

4 Advantages of an RLF-like approach

As is evident from the previous discussion, a reuse- and models-based approach to system
engineering requires significant tool and infrastructure support. There are a spectrum of
techniques to apply to domain modeling and domain model representation. These approaches
range from semantically weak ones such as keywords to semantically strong ones such as an
object-oriented (0-0) approach. A list of candidate approaches is given on the next slide.

Page 15

February 1993 STARS- UC-05156/020/00

Domain Model Approaches

* Keywords
Slkle 18 * Faceted Classification

* Structured Inheritance Network

e Object-Oriented

There are two main competing approaches that have received widespread use: faceted classi-
fication (which is a structured form of keyword-based techniques) and object-oriented (0-0)
classification. In fact, RLF models can be built which provide all of the features of a faceted
scheme. Moreover RLF shares several features with 0-0 techniques including support for
inheritance of properties (including multiple inheritance) and the specification of class (or
category) attributes.

The RLF with its semantic network, rule-based, and hybrid modeling techniques is well
suited to provide modeling support. It represents a semantically rich modeling medium
which includes most of the 0-0 features that are important to reuse, and leaves aside other
features that are not as useful for reuse. Some reasons to consider the RLF are summarized
in SLIDE 19.

Page 16

I ,

February 1993 STARS-UC-05156/020/00

Why Use the RLF?

"* Includes all key features of Faceted Classification

facets and facet terms can be provided through RLF

relationships or fact base schemas

"* shares key features with 0-0 modeling including (multiple)

inheritance, but

Slide 10 * doesn't require 0-0 design or programming approach

"* separates model from application which uses the model

- different applications run over same modal

- different models accessed by same application

"* models maintain variants of subsystems at any level

"* enforces semantic restrictions

"* models as first-class objects, artifacts, assets

However, RLF models are not just 0-0 models, and in fact can be built for systems that
are designed and implemented without assuming an 0-0 programming paradigm. Whereas
0-0 techniques encapsulate behavior with classes and objects, this association may not be
appropriate for general reuse libraries. In fact, evidence suggests that "code inheritance"
may not be an effective way to support reuse. RLF models empower applications which
use the model in application-specific ways - there are no built-in assumptions about how
systems built from the model are constructed. One can view an RLF model as a rich data
structure and RLF abstract data types provide the necessary interfaces to interact with and
manipulate the data structure.

RLF library models have a subset of 0-0 features that are most appropriate to support
reuse. The use of RLF semantic network models enables effective modeling of subsystem
variants at all levels within the model, and not just at the frontier portion of the model.

Domain modeling is a form of knowledge capture and a knowledge representation formalism
is required to encode and manipulate the captured information. The RLF provides two
complementary forms of knowledge representation. In the following sequence of slides, the
semantic network information subsystem called AdaKNET will be surveyed.

Page 17

February 1993 STARS-UC-05156/020/00

AdaKNET provides the basic supporting atructure for an RLF library domain model. It

"* encodes static aspects of a domain model

"* provides structure for library

"* describes reusable assets and their properties and relationships

"* has scalable power of representation

Knowledge Representation

e System of formal conventions for encoding knowledge -- the
modeling vehicle

Sle 20 The RLF uses AdaKNET as part of its Knowledge

Representation Scheme (KRS)

- based on KL-One (Brachman)

e AdaTAU is an auxiliary KRS

- Other auxiliary KRS have been used with AdaKNET including
CLIPS

AdaTAU contributes the following capabilities to the RLF:

e as an auxiliary modeling formalism, it supports those domains which require a less
formal representation

e can directly encode faceted classification schemes

e can "grow" faceted schemes into more taxonomic models over time

* handles a simple interactive protocol for eliciting and processing less structured infor-
mation within the system

* provides means to reason about the model represented using AdaKNET

Page 18

February 1993 STARS-UC-05156/020/00

5 AdaKNET Semantic Networks and LMDL

Before considering the features of AdaKNET in depth, SLIDE 21 notes the distinction be-
tween the implementation of AdaKNET and the general modeling notation and examples
presented in the rest of this section. Much of the discussion in this section would apply to
any general semantic network system, including KL-One. The actual use of AdaKNET and
LMDL (Library Model Description Language) is covered in depth later in this orientation.

AdaKNET Principles and Notation

"* Semantic network principles are introduced first

"* Graphical notation is reused from original KL-Gne treatment.
- This notation Is not supported In RLF tools

Slide 21 - RLF networks are specified textually and translated to machine representation

- RLF Graphical Browser displays networks as trees with replicated nodes

"* Designers can use sketches like those presented here to design
models incrementally

"* AdaKNET graphical model editing tool is a potential future

enhancement

As an indication of the different representations of network structures used in this tutorial,
the next three slides show a KL-One style view, an RLFGB style view, and an actual
LMDL network textual specification for a simple network model. Both the KL-One and
LMDL notations are used extensively in the tutorial. The RLF_1GB notation conventions
are treated more completely in the RLF User Tutorial.

Page 19

February 1993 STARS- UC-05156/020/00

KL-One Notation

Slide 22

RLF GB Notation

'4-il

k6•

Slide 23

C'AOsM WI4dao 1

Page 20

£ *

February 1993 STARS- U C-05156/020/00

LMDL Notation
library model "Nameal Xodel is

root category mammal is

end root category;

category yak (mammal) is

end category:

category dog (manmal) is

end category;

de 24
category oat (mazmal) is

end category;

object *Lassies (dog) is

end object;

object "Rin Tin Tin* (dog) is

end object;

object "8noopy" (dog) is

end object;

end KMAmMal Xodelm;

Semantic networks are also known as structured inheritance networks (SLIDE 25) because
information located at one node of the network is inherited by those nodes of the network
which are descendants of that node. In particular, links to other parts of the network
established for a parent node are inherited by child nodes, although those links can be made
more specific (constrained) as examples to follow will show.

Page 21

February 1993 STARS- UC-05156/020/00

AdaKNET

e AdaKNET provides a language formalism -- LMDL

A formal language enables the clear and

Slide 25 precise definition of model features

* AdaKNET is a structured inheritance network

Such networks provide an economical and

practical representation of category and object

relationships

There are five main features which determine the ability of AdaKNET to represent knowledge
which are shown in SLIDE 26. These are discussed in the following slides. In the course
of explaining AdaKNET modeling, various model diagrams will be drawn to help illustrate
AdaKNET features. The next slide summarizes the basic capabilities of AdaKNET.

Basic Features of AdaKNET

e Categories

e Objects

* IndividuationSlide 26

Category Membership

e Specialization

Specific-General (IS-A) relationships

* Aggregation

Whole-Part (I.'A.S-A) relationships

SLIDE 27 illustrates the notational conventions used in these diagrams - they are similar to
those used in the general literature to present and discuss semantic networks.

Page 22

February 1993 STARS- UC-05156/020/00

SeArrow Category or Object Oval

Slide 27

Relationship Arrow

Individuation .- .--.
Arrow

Filled Relationshifp Arrow

Categories (a.k.a. concepts) provide the means to model general classes or kinds of things.

a Concept

a.k.a. generic concept

soe 28 category

class

Represents concrete things or

abstract categories

The following slides show some categories that are appropriate for a model of the sorting
domain.

Page 23

February 1993 STARS .UC-05156/020/00

Slide 29

Category Examples

Exercise 1
Slide 30

Create some concepts for the domain of ...

Objects (a.k.a. instances or individuals) model category instances - particular things.

Page 24

February 1993 STARS-UC-O5156/020/00

quickso r a Individual

a.k.a. individual concept

Sli. 31 object

instance

Represents a specific instantiation of

a category

Object membership in a category is represented by an "individuation" link. Objects are
soinetime. referred to as individuals. Objects receive their essential identity from their
relationship to the containiag category.

Representing Individuation

Individuation Link

Slide 32 this link is usually drawn pointing up

it is always drawn from an irndividual
to a concept

indicates that the individual is an
actual instance of the idea
represented by the concept

The next slide shows two examples of objects linked to their parent category.

Page 25

February 1993 STARS- LJC-05156/020/00

Itrnalor DataStructure

Slide 33

HeapAda Array

Simple Individuation

Note that it is not always clear when an idea (an intellectual concept) is best represented as
a category or as an object in a semantic network. There are situations where both may seem
to be possible and the circumstances surrounding the application of the model may tip the
balance in favor of one or the other. For example, Array is represented as an individual on
the previous slide; in some situations Array may be best represented as a generic concept
(category) with many specializations. For reuse library applications, SLIDE 34 suggests a
generally useful viewpoint on distinguishing generic concepts and individual concepts.

Categories vs. Objects

" A generic concept represents a category of assets or
Sklde 34 information type used to distinguish assets

"* An individual concept (object) represents a particular

asset or elemental piece of information about assets

Page 26

February 1993 STARS- UC-05156/020/00

Exercise 2
Slide 35

Create some objects for the categories you

created in exercise 1 in the domain of ...

Category/sub-category relationships are captured as specialization links in AdaKNET net-
works.

Representing Specialization Relationships

Specialization Link
a.k.a. 'is-a' link

Slide 36
indicates the "lower' concept is a
narrowing of the category represented
by the "higher" concept

link is usually drawn pointing up

it is only drawn between concepts

Page 27

February 1993 STARS-UC-05156/020/00

SortingAlgorithm Attribute Value

Slide 37

InternalSort SourcelLnguage

Simple Specialization

Exercise 3
Slide 38

Create some specializations of the categories you

created in exercise 1 in the domain of ...

Properties of categories are provided through aggregation links. These links allow category
relationships to be expressed that provide whole-part information or further define category
characteristics. Adaknet roles (as these aggregation links are called) have three distinctive
parts as shown on the following slides.

Page 28

February 1993 STARS-UC-05156/020/00

Representing Aggregation Relationships

dog a.k.a. 'has-a' links, roles, rolesets,
relationships

Slide 39 has Ies Usually represents either a
part-subpart relationship

(4..4) (e.g. "car has-a engine")

legs O31 OR

a characteristic
(e.g. "car has-a color")

Each role is identified by a name, a range (the number or times the role can be repeated for
an individual) and a type which identifies the nature of the role.

Representing Aggregation Relationships (cant)

Aggregation links

3 parts:
Slide 40

name has-leg

range (4.. 4)

type leg

An RLF model designer should pick useful and informative names for aggregation links.

Page 29

February 1993 STARS-IUC-05156/020/00

Representing Aggregation Relationships (cont)

Slide 41
name - generally a verb which indicates

the nature of the relationship

The designer must also establish bounds on the number of anticipated repetitions of each
role as well as the basic kind (type) of information being captured by the role.

Representing Aggregation Relatioliships (cont)

range - a numeric range indicating how

many copies of the relationship may
Slide 42 exist simultaneously

Range is an ordered pair:
(min.,max.)

e.g. (1..1) (O..infinity) (4.5)

Page 30

February 1993 STARS-UGC-05156/020/00

Representing Aggregation Relationships (cont)

type - generally a concept which specifies

Slide 43 what kinds of things can be used as

the value of this aggregation

relationship

The next slide shows a simple example of the definition of relationships provided by roles.

Slide 44BcrtAlcrlhm

SourceLanguage Dawgructure

(Olint) (11)

Simple Agrellrtion

Page 31

February 1993 S TARS-UC-05156/020/00

Exercise 4

Create some aggregation links for the
Slide 45 specialization hierarchy you have created in the

previous 3 exercises in the domain of ... At least

one of these links should represent a whole-part

relationship and at least one should model a

characteristic relationship.

The ability of a structured inheritance network to model domain information is actually
contained in the specialization (category to subcategory) and aggregation hierarchies which
form the infrastructure of the network. Aggregation information is inherited along the spe-
cialization hierarchy. Objects that instantiate a class require other objects that "fill" the
corresponding aggregation slots possessed by the category to which they belong. These
aggregation instances are called role "fillers." In general, aggregation information can be
localized (restricted and decomposed) at. lower levels of the specialization hierarchy. This
process is covered in the next several slides.

The Specialization Hierarchy

9 Fundamental model properties are conveyed through
AdaKNET's specialization hierarchy

Slide 46 - provides taxonomy, oonoeptual deoomposition, subsumplon hierarchy

- catgories are "deolad" In Uh oontext of td's hMerarchy

e Subsume (Oversume)

To classify in a more comprehensive category or under a
general principle

Page 32

February 1993 STARS-UC-05156/020/00

Slide 47 scAkrm

Ordw"dDaia Umoorded- Dta

Aggregation information is inherited along the specialization hierarchy.

Inheritance

* Whenever a category that "has aggregation" is specialized, that

aggregation structure Is inherited by the more-specific ("lower

level") category.
Slide 48

e Roles are installed at the highest level appropriate.

e You can add new, local roles to any category, regardless of

whether It has inherited roles.

9 Objects in category possess all roles of containing category,

whether locally defined or inherited.

SLIDE 49 provides a simple example where a relationship in a parent category is inherited

by a subcategory and the subcategory has its own local relationship.

Page 33

February 1993 STARS-UC-05156/020/00

Slide 49

Datairucture

workbOn

Rdatonships are Inherited

Exercise 5

For the model fragment you have been

Slide 60 developing in the previous exercises, install new

roles if necessary and then show at least category

with a role which is inherited from a parent

category as well as role declared local to the

category.

In fact, AdaKNET permits a limi*ed form of multiple inheritarice.

Page 34

February 1993 STARS-UC-05156/020/00

Multiple Inheritance

* AdaKNET supports multiple inheritance -- categories can have
more than one parent category

.ild 51 * Usually this means that the specializing category inherits the

relationships of all Its parents, but:

- parents have common ancestor, thus common relationships
The Interstction of th available relationship resrilotions from both

parents are Imposed

- parents have different relationships with same name
This sltualion Is not allowed in AdaKNET

The next slide shows a simple example of multiple inheritance where the inherited relation-
ships are distinct. Note that multiple inheritance is often useful in AdaKNET models because
different access paths to an object or category may support different classes of users. In the
RLF, an object may be declared to have multiple parents - it is not necessary to declare an
intermediate category for multiple inheritance to occur.

M(0ll (0ru JO

Slide 52

Muldple I milnc.

When a relationship is simultaneously inherited from multiple categories, it is necessary to
merge the range and value restrictions of the relationship so that it continues to describe

Page 35

February 1993 STARS- U C-05156/020/00

both parent relationships. The relationship's range must be the largest possible range that
falls within all the parents' ranges for the relationship. Similarly, the relationship's type
must be the same as or subsumed by all of the parents' types br the relationship. If a
range or type meeting these criteria does not exist, the inheritance is not possible without
violating subsumption, and the specialization is not allowed. The library model specification
translator will report an error when constructing the library model representation and abort.

Any parent relationships which have the same name but do not descend from a common
ancestor are distinct relationships. In order for these relationships to be inherited by a
single concept, the name conflict must be resolved by renaming one of the relationships
before the child concept can be created. This should be done in the LMDL specification for
the library model.

Users just beginning to create models in RLF should carefully evaluate the need for multiple
inheritance. Multiple inheritance is not used in the rest of this orientation.

As role information is inherited, it can be made more specific, but it can never be generalized.
Roles can be narrowed in terms of cardinality (the number of permitted repetitions) and role
type - at a subcategory, there may be fewer repetitions and/or the type of role filler may
be restricted to a subtype of the original role type. These strict subsumption semantics for
AdaKNET distinguish it strongly from most 0-0 approaches.

Narrowing Roles

e Inherited roles can be left unmodified or they can be narrowed.

* Two ways to narrow an inherited role:
Slide 53 - Narrow the type

new type must be a specialization of the original type

- Narrow the range

* You can decrease the range, not increase it
* You can converge the range, i.e. make max. - min.

The next slide shows a simple example of relationship restriction where the relationship is
restricted both by type and by range.

Page 36

Februaiy 1993 STARS-UC-05156/020/00

Narrowing Relationships

Exercise 6

For the model fragment you have been

Slide 54

developing in the previous exercises, show
examples of role restriction that narrow the type

and the range of an inherited role.

Role differentNation is a kind of spcia.lization for roles:

e subsetting - splitting cif a part of a role (but perhaps leaving some parts of the original

role alone), and

"* partitioning - splitting a role completely into disjoint parts

Page 37

February 1993 STARS.UC-05156/020/00

Role Differentiation

* Differentiation allows you to divide a role into a set of subrolos.

* Two ways to differentiate a role:
Slide 56 - Partitioning

role divided Into a sat of subroles and each filler must be assigned to
exactly one subrole (nn further role differentiation possible)

- Subsetting
role divided Into a set of subrols and each filler can be associated
with zero or more of them (subset roles can be further differentiated)

The next slide shows a small example of relationship subsetting where a relationship is de-
composed into two named relationships which do not partition the original relationship. This
orientation will not consider differentiated relationships further as they are more appropriate
for complex modeling situations. The RLF Modeler's Manual provides should be consulted
for more information.

Body Part

Sfingers of

Slide 57 Hand Finger

U (01)

(01) of Thumb
,utahof

The following slide iG a small but representative example of a model built using AdaKNET
principles. In the hands-on session to follow, the development of a software model will be

Page 38

February 1993 STARS-U C-05156/020/00

undertaken that further illustrates the principles discussed above. Note that in this and
subsequent network illustrations, objects are not drawn with double ellipses enclosing them
since the use of the lined arrow for an individuation link normally makes in clear that the
node represents an individual class member and not a subclass.

Slide 58 ,

Actual RLF networks are created from network description files in a specification language
called LMDL - Library Model Description Language.

Library Model Description Language -

LMDL

Se 59 * Ada-like non-procedural language

* Specifies all objects and relationships in the model

* Is translated to produce files which represent the model

o Is modified and re-translated to change the model

Page 39

February 1993 STARS-UC-05156/020/00

A survey of the usage and features of LMDL is presented in the third major part of this
tutorial.

6 Model Hybridization

The actual contents of an RLF library are located relative to categories modeled in an RLF
network. But the storage of these contents (typically as file objects) and the processing and
manipulation of these contents are provided by additional RLF features layered on top of
the network. One simple kind of asset processing is the simple display of text file assets in
a window on the library user's display screen.

Another kind of asset and library model processing is provided by the AdaTAU inferencing
system which is also layered on top of a basic network model. Inference bases can be used
to set up and control complex library interactions that are themselves examples of sophisti-
cated asset processing. One example of such processing is system configuration whereby a
subsystem is assembled, at least semi-automatically, from assets that are individually stored
in the library, possibly after the assets are tailored to user requirements elicited during the
inference process.

The attachment of AdaTAU inference components, the location of asset files, the storage
of additional asset state information (e.g. numeric or text-string values and longer textual
class or object descriptions stored in files) and the specification of RLF "actions" to process
assets on an individual basis are all currently provided as extensions to the LMDL language.

This additional layering, and the binding of AdaTAU inferencers to particular AdaKNET
classes and objects, is called "hybridization." Hybridization allows a text item, an integer
item, a file item, or an inference base to be associated with an AdaKNET category or
object. Moreover, RLF actions allow the internally provided RLF "inferencing" action to be
augmented by other large-grained asset processing services.

Page 40

February 1993 STARS- UC-05156/020/00

RLF Hybridization

9 Allow a text item (string or file), an integer item, a general file

item, or an inference base to be associated with an AdaKNET
class or object.

Slide 60 * The actual file for a software component can be bound as a text
file to an object.

* RLF graphical browsgr allows for viewing of associated files

(and in general for e:ecution of RLF actions).

* Allows inferencer support to be context-sensitive.

e Switches between in, erence bases make moves through library.

RLF attributes are used to annotatu categories and objects with static information that
provides additional data about them. Attributes are the means by which actual file contents
are attached to reusable assets which are modeled as objects in an RLF model. SLIDE 61
illustrates some basic features of attributes.

Attributes

"* can be Integers, strings of characters, or files

"* have names so they can be referenced and used by

Slide 61 RLF actions

"• file attributes cani be viewed, extracted, or otherwise

manipulated

"* attributes are not inherited -- they must defined at

each category or object where they are useful

The next slide introduces a companion knowledge representation system to
AdaKNET. This subsystem is called AdaTAU (TAU stands for Think - Ask - Update) which
is the basic process by which new facts are deduced from a current set of facts through a

Page 41

February 1993 STARS- UC-05156/020/00

process of rule selection and execution. AdaTAU features and basic operation are elaborated
on later in this package. The main usage of AdaTAU has been to "program" a user's
interaction with a domain model and to direct the user to the completion of specific tasks
that the domain model supports. Possible uses include assisting a user to:

* navigate an AdaKNET model

* compose a system from objects in an RLF-based library

o enter and qualify new objects within an RLF-based library.

In addition, other kinds of inferencing support have been added to models defined using
AdaKNET. NASA's CLIPS inferencing system has been integrated with AdaKNET by the
CARDS program to support system composition from library components.

AdaTAU

9 Rule-based inferencing engine

o Rule bases defined in RBDL -- Rule Base Description

Language

o Inferencing can be distributed in different areas (e.g. nodes

of the network)
Slide 62 S Captures per-usage, dynamic, non-structural knowledge

* Tailors advice to the orientation and goals of user

* Interacts with the user to gather per-usage information

• Based on responses, make deductions about model
elements and contents that are of interest to the user

* Can focus user to specific category or object

* Requires additional knowledge modeling

Page 42

February 1993 STARS-UC-05156/020/00

7 Asset Processing

In addition to the bdilt-in notion of processing inference bases via AdaTAU, the RLF per-
mits the modeler to introduce either internal or external model processing elements called
Actions. Some basic facts about actions are listed on SLIDE 63. Actions let the user
process categories and objects and permit access to system and library resources within
a context appropriate to specific categories and objects. The. context for these actions is
provided by RLF attributes. In particular, RLF actions provide the mechanism by which
library assets can be processed. Two simple kinds of asset processing are asset viewing and
asset extraction.

Actions

e provide library users with appropriate system and library services

o basis for asset viewing and extraction

o defined within LMDL specifications - sample Action sub-model

provided In RLF distribution

o implemented as system calls, or Internal Ada procedures
Slide 63

* inherited like relationships

e have names, an action category, a list of action targets, and a list
of action agents

- targets reference attributes which provide input for the action

- agents reference attributes which affect how the action is performed

e can be privileged which means they are unavailable through the

RLF GB (restricted to administrative use)

e can be restricted at subcategories or lower level objects

Rather than provide a set of built-in actions and provide a mechanism for augmenting this
list with user-defined actions, the RLF makes no assumptions about the set of actions that
might be useful to the modeler who is supporting a given community of users. All action
processing is established through an action sub-model created using LMDL. As a guide to
the creation of models wit actions, some of the sample models included with the RLF release
contain a sample action sub-model. This model is shown graphically on SLIDE 64.

Page 43

February 1993 STARS- UC-05156/020/00

Slide 64

RLF network specifications include the declaration and use of Actions in order for model
state information to be processed in a manner consistent with the type of state information,
and to afford the opportunity for the RLF to provide larger scale asset processing. As
shown in the previous slide, actions are declared as AdaKNET categories within a LMDL
specification, but the graphical browser does not display them as categories since they are
not used to model the domain, but rather to set up asset processing and manipulation within
the domain model. This information may be confusing to an engineer using the graphical
interface to interact with the library. SLIDE 65 identifies some library services that can be
provided through action specifications.

Action Applications

e Execute tools

View code
Slid. 65 * Extract code

o Send mall

o Run prototypes

o Generate components

Page 44

February 1993 STARS-UC-05156/020/00

The library modeler should use one of the sample action sub-models as a starting point for
defining the set of actions that will be made available to library u, -rs. As srefact-graph
shows, there will be a top-level action category defined at the top of the library model
(immediately below the root category). The RLF GB interface automatically suppresses the
sub-network below the Action Definition category.

SLIDE 66 shows a LMDL description for the top-level of the action sub-model whose graph
is shown in SLIDE 64.

Top Level Action Spec
category "Aetion Definition" (thin) .s
ean category;

categorzy "otLoa Type" ("Action Definitioa") is
sad oategory;

category "=ystem string" ("Action Typo") 1.
anG categorjl

category *Ads froceftrza" ("Action TpAM") Is
end oatage@yg

Wide S category "Neemg leIP" (MAotion TYPe") is

eA oategory#

CategfzY Action ("Action Definition") Is

reiatio"Uhps
haseAction..twyp. (1 .. 1) of "action �,yp•"I

anG rolationahipal
sad category;

category View (Action) is
restricted relationa.blp

hae._ctiont..typ. of "Ayston ltrise*i
and ttLoted

Ottrikwt~e
string I* ftitter -0 *WLP-P&M ## a",

and attribute.,
end catego•yp

This specification shows the definition of a View action that enables the display the contents
of a category or object which has textual state (e.g., the contents of a code file asset). Such a
subcategory definition is required tor each of the actions that the modeler wishes to include.

For an action provided through an OS-level command - identified as an action type of
System String - the command to pass to the OS must be defined as a string attribute
aloug with place holders for the arguments to be passed to the system command when the
action is invoked. The string for the View action is also shown in SLIDE 66. In this
example, the place holder is marked by the characters WB. The character & is part of the

Page 45

February 1993 STARS-tUC-05156/020/00

system command indicating that the system command is to run as a background process.

Once a collection of actions has been defined in a sub-model as is shown above, their use
within the library model is specified via a collection of related attribute and action definitions.
A small model fragment will be used to help explain this connection.

The slide sequence in the rest of this section illustrates the process of attaching asset contents
to an existing model. A model fragment is shown that describes the fact that code assets
have authors and reviewers and we wish to capture the text of an actual code asset within
a library using this model.

Author
Ceated a (1..1)

Code p _ muoSubmitted Date Aegtseme(1 .. 1)
(1 .. n)

Slide 67

Stanf

Flal

"Jil

Sort-I is an individual asset which carries with it some internal state, including the source
code which implements the asset.

Page 46

SFebruary 1993 STARS-UC-05156/020/00

Indlvldual - Example

Sort.1 is the asset with

" ,,,thor - Jim whose reviewers

Slid* 68 Sr " 1 are all members of the QA staff,

one of whom Is Hal and one of

whom is Jill and whose contents

are In the file sor._l.a

LMDL includes the ability to attach such internal state to an AdaKNET entity (category or
object) and RLF actions (set up via LMDL declarations as shown above) are made available
to the user to process this state. The file containing the source code for an asset is identified
via an attribute of the asset category.

The various relationships that an asset is involved in are represented via filled relationships
that connect the asset to other objects in the model. For example, the author for Sort-l is
Jim. This filled relationship is shown on the next slide. There are two reviewers identified
for this asset - this information is also captured by filled relationships as shown in the slide.

Cresid fto (0 .. I)
(1 -1)

Subndttu Date AMpro

SlideI 69

Page 47

February 1993 STARS-UC-05156/020/00

SLIDE 70 gives a LMDL fragment which shows some of the LMDL clauses required to declare
Sortil and to provide file contents for this asset.

SortlI LMDL Specification
object Sort_1 (*Code Assetu) is

restricted relationships
Reviewer (1..2) of QOA Staff";

end restricted;
fillers

Jim satisfies Author;

Ral satisfies Reviewers
Sld.70 Jill satisfies Reviewer;

end fillers;
attributes

file contents is nsort-i.am;

end attributes;

actions
mview Sourcem is View on contents;

end actions;
end objects

SLIDE 70 makes the connection between the contents of the asset object (stored in the file
,ort-1. a) and the action to view the contents. This action is given the name View Source
and is implemented via the system string defined as an attribute to the View action. The
actual input for this action is provided by the contents attribute of Sorti.. The file name
defined by this attribute is substituted at the location identified by the action placeholder
when the action is selected by a library user who wishes to examine the contents of the
Sort-l object.

Note that the action declaration shown on SLIDE 70 actually binds together the action with
the state which the action is to process. The state is named in a LMDL attribute declaration
which in many cases identifies a file that contains the state. This file must be supplied as
an input parameter to the text of the action call.

This two-way connection is highlighted on the next slide. Note again that the slot in the
action string where textual input is required is indicated by '##'. When the action is

Page 48

February 1993 STARS-UC-05156/020,100

executed, the corresponding string value from the object provides the substitution for this
placeholder.

Making Action Conections

Action at the visible object Sort.1:

"View Bouroe" im View on contents;

Slide 71 Attribute at the invisible action View:

string is Oxterm -0 $RLFPAGRR ## &"i

Selecting the View Source action brings up a viewer on the
contents defined for the object. ## is a placeholder for the
file name location of the contents.

The next slide notes the inheritance properties of actions and points out that the attribute
to be processed by the action must be separately declared for each category or object for
which the action can be meaningfully applied. Thus while actions are inherited, the targets
for actions are not inherited.

RLF Action Inheritance

e Like relationships, actions are inherited down the specialization
hierarchy

Slide 72 * Actions should be declared at most general category for which

action is meaningful

e Attributes which are action targets are not inherited

@ Action targets m,.st be declared locally to each category or

object for which action i1 meaningful

As an example of how to effectively use action inheritance, the view action defined above

Page 49

February 1993 STARS-UC-05156/020/00

for Sort-1 can be declared instead at the Code Asset category. All objects which belong
to this category will have the view action deftned for them. The contents attribute must
be declared separately for each object which has contents. The RLG GB will only offer the
action at those subcategories and objects which actually define the attribute. SLIDE 73
shows a partial specification with an action defined without a locally defined target.

Code Asset LMDL Specification

category "Code Asset* (Asset) is

relationships

luthor (1..1) of Person;
Reviewer (C..inf) of Personi

en-1 relationships;
restricted relationships

SI7 Ubitted Date' (1..1) of ...Sl~d. 73
•Created Date* (...1) of ...

end restricted;

attributes

end attributeel

actions

OView Source' is View on contents;

end actions;

end category;

The final step to creating models which use actions is to locate the attributes which provide
inputs for the actions (files) in a place where the browser can find them. The RLF environ-
ment variable RLFLIBRARIES is used to declare the base path name, and the state files must
be located in a fixed location relative to this path as shown in SLIDE 74. The files can be
physically be copied to this location or installed via the use of symbolic links.

Page 50

February 1993 STARS-UC-05156/020/00

Locating File Attributes

"* RL.'LIBRARIZ defines a relative location for all file state

"* Files are located in the $RLV.IzAlz3s/Text subdire.tory

Slide 74 * Files can be copied or linked to this location

"* if multiple libraries are in use, a named subdirectory of

$RLv.T.LZBRAR'rEa/Text can be used

"* Attribute declaration in LMDL must name the subdirectory

"* E.G. fl1e source is

"sort.-and-search/shaker.sort_. am;

8 Modeling Suggestions

The next few slides address some basic modeling issues and suggested practices that prospec-
tive RLF modelers should be aware of. These are summarized on the following slide.

Modeling Issues

"* Model Evolution
Sl1de 75 * Naming categories, objects and relationships

"* Representation choices

"* Model Usage Goals

A suggested approach to take in the creation of RLF models is to start small and gradual'y
evolve the model by adding detail. Since the models are meant to support users, it is useful
to get intermediate versions of models in the hands of users and to solicit feedback from

Page 51

February 1993 STARS- U C-05156/020/00

them. As will be shown in the next few sections of this tutorial, it is relatively easy to define
a model and use the RLF GB to see it in action.

One important aspect of model evolution is the creation of intermediate specializations. The
next slide outlines some useful cases to consider.

Intermediate Specialization
e Question linear model fragments (e.g. Z specializes Y, and Y

specializes X)

- what is ratlonale for Intermwnlate category Y?

- are there objects in category Y that are not In Z?
Slide 76 - will model later include other categories of Y?

- will objects in Z also belong to other categories unrelated to X

e Provide rationale for specialization hierarchy choices

* Choose carefully whether information should be modeled in
specialization or aggregation hierarchy

e Reconsider categories which contain only single objects

Naming model elements is somewhat a matter of personal taste. Nonetheless, the next s!ide
provides some suggestions that have proved useful in prior modeling activities.

Naming Suggestions

e Don't get hung up on choosing perfect names -- model iteration

and refinement of names shouid be expected

a Choose singular nouns as names of categories

Slide 77 Choose active verbs or action noun phrases as names of

relationships

e Avoid name repotition between relationship name and

corresponding relationbhlp type

sometimes duplication Is hard to avoid

* Accept that choosing names can be surprisingly challenging

Page 52

February 1993 STARS-U C-05156/020/00

The next slide illustrztes a common naming dilemma.

Naming Subtlety
CAR" 00"W"

Slide 78
L~dp um

CaBDs L&M7

b•~~ I

Making represent,%tion choices can be esp(eýially troublesome for beginning modelers. There
are often many ft.ctors to consider, and the modeler can have difficulty in deciding which
RLF model building component to use. The next few slides illustrate some of these choices
and view points to be taken.

Representation Choices

"* Categories vs. Relationships

SlIde 79
"* Relationships vs. Attributes

"* Problem space vs. Solutlon Space

"* Functionality vs. Implemontaton

The next slide shows out some candidate modce fragments that represent alternate ways of
capturing similar information.

Page 53

February 1993 STARS-UC-05156/020/00

Categories vs. Relationships

In the model fragment on the left, the notion of gender is bound up in the distinction that
animals exist as males and females. In the right model fragment, gender is extracted and
made a model concept in its own right. Other categories can then be given restricted gender
relationships to isolate male and female properties for those categories.

It is not always obvious how to model information that reflects category properties - both
relationships and attributes can be used for this purpose. The next slide identifies some
distinguishing features that may help in making modeling decisions. Relationships and
attributes provide complementary capabilities for the modeler.

Page 54

., ,I'• i"" I II •OaIk

February 1993 STARS-UC-05156/020/00

Relationships vs. Attributes

* Relationships are inherited; attributes are not inherited

* Relationships can be restricted and differentiated

e Relationships are processed only by built-in AdaKNET
Slide 81 operations

* Attributes are unstructured and isolated to specific categories

and objects

* Attribute information can be processed by external and internal

actions

* Attributes are appropriate for long, descriptive properties

Another important distinction that the modeler should be aware of is that models ultimately
must support the needs of a community of users whose viewpoints differ considerably from
individual to individual, and from subgroup to subgroup. To illustrate this distinction,
the next slide considers model focusing from the dual perspectives of problem space vs.
solution space and functionality (features) vs. implementation. Models should always be
developed with a clear understanding of the intended usage goals of the model, and the kind
of application to be built or, top of the model.

Page 55

February 1993 STA RS- U C-05156/020/00

Model Focus Considerations

e Problem Space vs. Solution Space

* "What Is to be accomplished'" vs. "How to accomplish it"

* "Describing functionality and features" vs. "Describing
implementations"

SlId 82 * There can be many different levels or spheres of

functionality

* There can be many different implementation alternatives

e Should model lead to a single solution (e.g. automatic
system composition) or support multiple solutions (e.g.
human selection of system components)?

* Does model emphasize structure and features through

specialization hierarchy or through aggregation hierarchy?

9 RLF Model Creation

The rest of this orientation package presents auxiliary material to accompany hands-on
demonstration of the use of the RLF software to actually create and browse models. Except
for some necessary context-setting for the declaration of inferencers to augment a network
domain model, the discussion which follows is quite brief as it is written to provide annotation
for the demonstration.

These notes cannot convey the full process of conducting a domain analysis whereby do-
main information is collected and evaluated for the purpose of identifying an organizational
framework upon which a library of reusable assets can be figured. For the purpose of this
orientation, it is assumed that a library of sorting algorithms and sort implementations is to
be created and that a preliminary investigation of this application area (domain) has been
conducted. Standard data structures and algorithms texts provide a written description of
useful information to help decide which of several sort and search strategies and implemen-
tations can be used. The model built here is an attempt to capture a subset of information
drawn from such sources and provide the means to help sort routine (re)users decide which

Page 56

February 1993 STARS- UC-05156/020/00

of several approaches to take.

The notes attempt to convey the process of rendering the evolving model using the RLF. In
particular, the model is presented in the stages indicated on the following two slides.

RLF Model Stages

"* Build preliminary taxonomy -- show AdaKNET categories and

specialization hierarchy

"* Evolve taxonomy

Slide63 e Add properties and essential relationships to taxonomy -- show

AdaKNET relationships and aggregation hierarchy

"* Attach objects to appropriate locations within taxonomy -- show
AdaKNET objects and individuation links

" Provide object contents and object viewing capability -- show

RLF state and action mechanisms

RLF Model Stages (cant)

" Review the model and expand/arrange as necessary

complete network portion of model included in this tutorial
release

"• Provide model usage guidance and user support -- show

AdaTAU inference base mechanism

"" Complete full model definition

The RLF user must first set up an initial working environment. The steps necessary to do
this are discussed in the RLF VDD. In particular, the user must have access to the basic RLF
executables: RLFGB, Lmdl and Rbdl and have established a working RLF data location

Page 57

February 1993 STARS-U C-05156/020/00

identified by the RLF.LIBARIES environment variable. Object contents are stored in the
Text subdirectory of the location identified by this environment variable.

Some of the necessary steps to work with RLF models are given on the next three slides.

Using Lmdl

* Set up your working directory

via UNIX environment variable RaLI,.a-, RimzoS

Slide 86 e $.ai-LiDmmzaS sets your library directory

- needs subdirectories /Text and /Taustuff

- often referred to as the Instances directory

- contains the Ada data structures that make up an

RLF model and library

Using Lmdl (cont)

Sample working directory:

-nancy/Models
/Instances

/Text
Slde 86 /Taustuff

/3rode11
/model . ldind

/rbdl-s tuff

/Text

Nancy needs access to executables Lmdl, Rbdl, Run.GB,
Graphical.Browser, and necessary X resource definitions

Page 58

February 1993 STARS. UC-05156/020/00

Using Lmdl (cont)

* Create Lmdl specification using your usual text editor

e.g. modell .lmdl
Slkde 87

0 execute s nV $P•LL.,ZBRARZZB

your-dIr /I tan8oo

* execute Ludl modell. ladi

• execute Run,_GD to see results of model definition

For many of the model development stages shown in these notes, a network diagram is
included that indicates some essential features of the model at this stage of its development
along with a slide that shows some LMDL statements thaý define what is shown on the
diagram. This package also includes a slide or two which summarizes the goals of each stage
and points out interesting RLF features that are applied to meet these goals.

The first stage model builds a preliminary taxonomy of sorting algorithms.

RLF Model Stage I

* There is no one rightway to begin

* One approach Is to look for natural categorization within the
811d 88 domain

"* For sorting, a natural distinction is between internal (e.g. array)

and external (e.g. file) sorting

"* Within these two categories, a number of subcategories are

known (e.g Wirth's book: Algorithms & Data Structures)

Page 59

February 1993 STARS-UC-05156/020/00

One top-level dezomposition is shown on the next slide and the complete LMDL specification
file is shown in SLIDE 90.

Slide 89

library mnodl stagel Is

root category (Slort Algoritbam) is
MAu root categoryg

category Zu.aa ozts ("Sort Algorithmatm) is
end category?

category rzternal Sortus (eSort Algorithl•O) is
end category;

category useasrtin Mitort (unZteral Sirt*m) in
end catogorys

category emfleotion lortow (0Zate~rzal bortsm) is
end category:

category Uczabage Sorts" ("Zntemml bitet ") Is
en4 category$

Page 60

7,. , 7

February 1993 STARS- UC-05156/020/00

category "*11traight Mergingo (Iztornsal Sorts") Is

end Category;

category 8Dist. of Init. Runh* ("Mturzial sorts") is

end category,

category *Natural Mergingw ("Rxternal Sorts") is
end catogoryi

Slide91 category "multi-way Merging" ("External Sorta*) Is

end category,

o&tegory "Dalanioed Merge" "Elxternal Sorts") is

end categorys

category opolyphasoe Sorte" "External Sorts") is
"end category;

end stagw-lg

The next stage involves further decomposition of the preliminary taxonomy.

RLF Model Stage 2

a The top-level decomposition is too broad to be very useful

e The modeler must look to break down categories into
Slide 92 subcategories which are closer In granularity to the categories

of assets to be stored within the libray

* Categories which correspond to known sorting algorithms are
likely to be useful

• The next slide focuses on decomposing the internal sorts only

The next two slides slide show the decomposition of the internal-sorts three main subcate-
gories into algorithm-level realizations of those three main categories.

Page 61

February 1993 STARS- UC-05 156/020/00

Slide 93

11brazy o~e teoj2 is

root category (0Sort Algovitin.) is
end to"t Cat~egory

astegozy "Znt~mnul sorts" C Soot Alfoeithino isL
end estogozyl

category *znsoztion Bototm N "Iteznau Bolts. is
and oategozyl

Son" 04 category *2.1.uction Botoms C "Itezual foots" toI
end ostsgOzys

onusegozy "Straight Soletioam ("Boleottom, Borts") is
and eat"goryp

ent eg ozy $w m O ltt** C "I te rn al Bo lts") is
arnd Catoegory

"atogoz9Y *"MIuY Insert" "InsertLen Boltom)is

eategosy OBtWSLgbt Insert" "Zauwetion solts") so
ead.togozyu

Page 62

February 1993 STARS-UC-05156/020/00

o cry OfgrIaehigo (casen3" ("Imaortton Ao*" to1.

category Shellcort ("#el.otion forts") is
end cate"Ryi

eategozy Neepuort ("Selectioen MorttE" isLSlide S *.g €• •:•

.ategozv fibaketrmot (fwhau.e forts,) tL
emn cat .ETZ•

octegory gL•ssort ("Ib•ohame **ors) is
emS .. tegoz•#

While the method shown in this section begins with an initial definition and elaboration of
a model specialization hierarchy, some models may be more naturally built by concentrating
on establishing a basic aggregation hierarchy for a small collection of categories and letting
the specialization hierarchy grow as required. This choice is also somewhat based on the
natural inclinations of the model builders themselves.

10 RLF Model Evolution

After producing a class hierarchy of the proper granularity, RLF models can then be config-
ured to distinguish members of the taxonomy in terms of various class properties.

Page 63

February 1993 STA RS- U.C-05156/020/00

RLF Model Stage 3

* The RLF captures properties in terms of its aggregation hierarchy

(relationships)

e Relationships have a name, a target type and a cardinality

S Relationships are defined for categories

o Subcategories Inherit the roles of their parents

e Subcategories can restrict the target type and cardinality of inherited

roles

e Objects which instantiate categories also need other objects to "fill"

the relationships which the object has by virtue of itvr category
membership

Once the definition of AdaKNET relationships begins, the use of the sort-algorithms class at
the root of the specialization hierarchy no longer seems appropriate. In fact, many AdaKNET
models begin with a generic thing root category so that somewhat unrelated sub-networks of
the model can co-exist. In this example, a subtree is needed to locate and reference the value
space for the various kinds o4f attributes used to classify sorting algorithms. This bifurcation
is shown in SLIDE 97. SLIDE 97 also shows a collection of 5 relationships which are declared
for the category sort.-algorithms. The following slide gives the LMDL statements needed to
establish the AdaKNET structure shown in the picture.

Page 64

FNbruawy 1993 STAR.S-LJC-051 56/020/00

Slide 97

(0(01)

librazy model mtago_3 is

coot category Thing is -- I Define the root node
end r'oot category$

category 6Sort Algowithms* T Ihing) to
relationships

ifsyrittenjnl (0 .. infinity) of *source Languagewl
works..on (0 .. Infinity) of EDtat Structureml
hau-best.came-of (0 1) of Perfoomance,
?zas.alwg..case.of (0 .)of Ferforimance,
has...orst..came-of (0 1) of perforimancel
ha._size-of (0 .. 1) of *Lines of Co~de*$

slid 98 end re2.ationshipas
Slid. end category,

category "Attribute Values (Thing) Is
and category)

category Ofource Languagem C kttribute Values' In
end category,

category "Data Etruature' & Attribute Valuesam)Is
end category,

category Performwnce * Attribute Values") is
eMd category#

end stago-3i

Page 65

February 1993 STA RS- U C-06 156/ 020/00

After a model's specialization and aggregatiun hierarchies have been fleshed out Gufficiently,
the modeler is in a position to address the identification and location ,of library assets -
object instances of the categories already developed in the model.

RLF Model Stage 4

e AdaKNET objects are declared as individuals in LMDL

a Individuals must declare their category parent(s) and any
Slide 99 relationship fillers that are known

e AdaKNET permits partial descriptions for objects whose

properlies are only partially instantiated

e Any parent category relationship whose legal cardinalhty

includes 0 may be omitted from the object's list of fillers.

A simple exat ,ple of the declaration of an actual sort algorithm implementation and the
filling of a relationship of the parent category by that object is shown in the next two slides.
Note that the object IHeap Ada restricts the cardinality of the is-written-in relationship it
inherits from Sort klgorithms and then fills this relationship with an object belonging to
the Source Language category.

Slide 100

Page 66

77774. ~7~~~..I~ir

February 1993 STA.Rq. UC-08156/02O/OO0

The LMDL doclarations definirg ýthe appropriate relationships and relationship restrictions
are given in SLIDE 101.

INw~tnL (0 .. Iniaty ot f Uo aI~mnwagoo

.b1.. b a (as- 40o~. Z.e u." 1 .9*wtgoe

oategew-apoolt 3 ..letti le).)9 1.t~~

ba...worst-ee...o (1 .. 1* of LIrfoaxmtwni

haa..Lu..oi (0 .. 1) 4% il o We"

a axeryvEtle oh3n

* log (3 AA Petiaf leemgo)awo Is~ef

eind objeat

11~~n RL ybiiationY

contetu aproprateloy. Thesor RL prlotoovides fo thedcaainooaeoyadojc tt

informationand othe delaainoacintopo.sshenfrto.

able" ~ ~ ~ ag 67wAs UsotIt

Februe.ry 1993 STARS-UC-05156/020/00

RLF Model Stage 5

"* Both categories and objects can have contents (RLF state)

"* State values can be integer or string valued, or can be the names of files
which contain state Information

" e.g., state attached to a subcategory of Sort Algorithm can explain some
Slide 103 key features of the subcategory

" e.g., state attached to an asset object (AdaKNE1 individual) can point to a
file which contains the code that implements the asset

"e RLF actions are themselves declared within the overall domain model

"o LMDL declarations connect pieces of state information to the actions that
can process them

"e Actions are Inherited by subcategornes, but state values are not

The model being demonstrated in conjunction with this tutorial only provides two simple
actions to display source code of an asset and text files which describe an algorithm. The
action subhierarchy of the model (derived from the root category) is shown in the next slide.
SLIDE 105 declares these two actions and shows how they are connected to some examples
of state information that they can process.

I Ide 104

Page 68

February 1993 STAR.S-UC-05156/020/OO

librarywI msl tee..5 Is

Ga4V1V *sort Algorithm" (Wing toi
vouahionm.ps

;1; "0.tionm~bpol
end cat~qouyf

caeteGeg "Actio Definition" (Whing) is
-'d categozyl

SON& IN aa0t~for "Action Y19." ("Ation Deinition")Is
and catng'wyg

coteuoav OSystes String" ("Action 7"o") is
Sol catogortj,

category *Ada lroo.&arD" "aetion two*") io
a"l oateaftyl

category Lot',.. (-Aotion Definition") is
mniationships

hs.~aatioe~typo i M1.) of *Lotion Y23e"i
end rolationehips?

category View (Action) Is
restricted relationship.

hms...otiSAtyp., of "fytotof string",
"d wostrioteal

OttriblAtOW
string is "intern -o *RLP..lLi ## v#

men attributoof
end ostegoryl

cacfegry "Display Descriptimn" (View)Isi
attributes

string igi "inter -9 $RW.)AM ## a"t
oat Itttriuntoee

end O&IegOZ71'

oatogor-j amovterel Sorts" *20Sxt Algorithms" IIs
en ategovyl

oaitegos "MonsteftS Sorts"* "Inteirnal Sorts") is
ottributes,

file lso..oseaveis, t sort.a.er,/netoer..m
end attributesi
"stic"s

"lead6 DeseRiptiom" i0 "Display DWeSenitiO%1 On lnsosouro.,M
eel oetions,

so& category)

Page 69

February 1993 STARS-UC-05156/020/00

obsleaot onUe a" A Ne(u) RIs
-euot.l WloatLomWWLO.

fi llim:

Swe10? a5ttr5ibute*
ilLe 4s... oarce Is .to..aa4_. b/c...±o....elt , a"i

fiLle aaze I .OIII ".lwlol~t.l..aa&..41awab/hiip~iupeadl."/

9110soure t

"View &our"*.to Vie on~ sourest.
"eanet sare* In lintrac

.in astLoino
and ob~jects•

A library model may have been initially created elsewhere but must be maintained and
enhanced locally. The simple declarative syntax of LMDL makes it relatively easy to add
new assets to a library change asset characteristics, install their contents and make viewing
and processing the asset available to library end users. Currently, such changes require that
the library's LMDL description file be edited and re-translated by the LMDL processor.

12 RLF Models and Submodels

Model creation and elaboration is not an exact science. 'Model revision is likely as model
iteration proceeds. The stages shown in these notes do not provide examples of all RLF
features, but they should give the beginning RLF model builder enough information to get
started. The last stage considered here prior to considering the addition of RLF inferencing
support to the model represents the decision to include searching algorithms as a natural
extension to the sorting model.

The joining together of models is made easier by RLF v4.1 support for separate specifica-
tion of model sections and the combination of these sections through incremental LMDL
processing. Incremental LMDL is addressed in the Administrator tutorial. Thus, while the
following example shows the embedding of the Search submodel within the original LMDL
specification, it could be defined in its own specification file with the appropriate reference
to the containing model.

Page 70

_. February 1993 STARS-UC-05156/020/00

SII II l Illlll I •'•

RLF Model Stage 6

• In pra•lca, sorting and searching data structures go

hand-in-hand

• The search taxonomy is analogous to the sort taxonomy

Slide 108
• Sort and search algorithms can have similar and related

properties

• A user who requires a sort often requires a compatible search

routine to go with it

• A new algorithms category is chosen as an intermediate class

between the sort and search subnetworks

Irl II iii

The complete model specification of the search and sort model is too large to be included
here. A portion of the newly added search sub-model is shown on the next slide (only the
specialization hierarchy is shown).

Slide 109

II IIa

The complete Sort and Search Algorithms model is included among the sample models
within the RLF v4.1 release.

Page 71

February 1993 STARS-UC- 05156/020/00

13 RLF Model Inferencing

The next series of slides discusses the basic features and modeling approach provided by
the AdaTAU inferencing subsystem. As mentioned earlier, AdaTAU provides the ability to
"program" how a user can make effective use of the information within a complex network
model and to explain key features of the model, thereby helping a user to learn about the
model.

Fact Bases in AdaTAU

9 Basic AdaTAU object is an "inference base" or "inferencer"

e Composed of "fact bases" and "rule bases"

9 Fact bases are collections of "facts"
Slide 110

- Facts are items represented as (attribute, value) pairs

- Facts are restricted according to a defined fact base schema

- Facts can have one-and-only-one, some, or arbitrary (av)

pairs as assertions as dictated by the schema

- An assertion is when a fact, given as (a,v) pair(s) are
installed in a "fact base"

In addition to facts about the domain model and the user's perception of the model, AdaTAU
provides rule bases to process fact bases and thereby expand the what the user knows about
the model and its contents.

Page 72

February 1993 STARS- UC-05156/020/00

Rule Bases In AdaTAU

* Rule bases are collections of "rules"

* A rule is said to be "fired" when its action is performed because

Slide 111 its antecedents are asserted

* There are three kinds of rules with different actions

- Irules (inference rules) - assert "consequent" facts

- Qrules (question rules) -queue a question to ask the user

- Frules (focus rules) - queue suggestion to switch inference

bases

The content of an AdaTAU Inference Base is determined by a set of declarations that define
the needed AdaTAU fact and rule base structures. These declarations are written using
RBDL - Rule Base Description Language - and consist of sections as shown on SLIDE 112.
An individual RBDL file may in fact include only a few of these sections the majority of
them are optional.

Inference Base Components

e fact base schema - doscribes facts and potential (a, v) pairs

* initial fact base - facts; asserted at startup

* fact parameters - describe facts passed between betwee.!1kide 112
inferencers

* irule base - collection of irules

* qrule base - collection of qrules

e question base - collection of questions queued by qrules

* frule base - collection of frules

AdaTAU operations are done in a cycle until nothing more can be done:

Page 73

February 1993 S'rARS-UC-05156/020/00

9 Think - fire any rules whose antecedents are asserted

* Ask - choose the highest priority question and ask it

* Update - add consequent facts of questions to local fact base

This inference process is summarized on the following slide. Note that the current AdaTAU
inference cycle is just one of many possible cycles that could be implemented using the RLF
software, Changing the inference cycle requires modifying RLF Ada code at a fairly high
level so that RLF application builders can modify it themselves.

Basic Tau Inferencer
lntoornatlon Flow -.-. --

Control Flow -
- Fact Bass----- -- -- - - ---

Chedck

Slide 113 TnkA

h I_ I I

In distributed AdaTAU (DTAU) you also see if a switch between inferencers has been queued;
if so the fact parameters are exported to the suggested inference base and in most circum-
stances the user continues the inference process in the new inference base context.

AdaTAU, like AdaKNET, has complex set of Ada interfaces and a specification language is
provided to insure that the interfaces are used correctly.

Page 74

February 1993 STARS-UC-05156/020/00

Rule Base Description Language -

RBDL

"* Ada-like non-procedural language

S1ide 114 * Specifies all seven AdaTAU elements

"* Is translated to produce files which represent an

Inference base

"* Is modified and re-translated to change the inference

base

The last two stages of the Sort and Search Algorithms model evolution touch on the
provision of more heuristic, procedural information aimed at guiding (advising) users about
the domain model and the assets contained with the library. This sort of information is
captured by using the RBDL language within the AdaTAU subsystem of tie RLF. AdaTAU
can be applied to guide users through a structurally complex network mod-4l and direct them
to look for and extract information in the manner that a doma-in expert raight use.

In actuality, the demonstration model used here is probably too simple to require the provi-
sion of such a guided mode of interaction but the next two stages will explot e the development
of such a mode to illustrate the application of AdaTAU.

Page 75

February 1993 STARS- UC-05156/020/00

RLF Model Stage 7

e A complex model may bewilder inexperienced users

* Extracting components from such a model can be tedious

* Solution is to provide supportive guidance in the navigation and
Slide 115 use of the model

e AdaTAU inferencers are attached as state to AdaKNET

concepts and/or individuals

e RLF provides built-in inferencing "action" to process these

inference's

9 Inferencers provided auto-navigation

SLIDE 116 shows an LMDL fragment that attaches some inferencers to the demonstration
model.

library model stage_7 is

root category Thing ia -- I Define the root node
end root category;

catevory Algorithm (Thing) is
relationships

livrLtteuin (0 .. infinity) of Oiouroe Languagee;

suids 116 and relationships;

end category;

attach inferencer algorithms to Algorithms;

category *Sort Algorithmso (Algorithm) is
end categoryj

attach infereacer sort-algorithms to *fort Algorithms';

The next few slides consider the sort-algorithms inferencer in some detail. During the demon-

Page 76

February 1993 !5TARS-UC-O5i 56/020/00

stration, other initial inferencer versions may be shown to show AdaTAU and RBDL features
in additional detail. In SLID)E 117, the basic structure of the facts that this inferencer can
process are declared.

fact barse schema sche ia...ozt.,a&lgcr~thmIs
prior-context I one-or (algorithms. orttalgorithms,

internal-sort, ezternal-sart, system, unknown),I
answer t one~of (Anternal-sort, external-sart,

dont..know, sti2l...Aantjwnow, Uzknown)i
continue..confirmme I some-of (yes, cal)
no-hits I One-Of (Yoe, no)l

end schema..sort...algorithmso

fact Parem~tes is
impacts t (prior...context ~meantory)i

Slide 17 exports I (Prior-oc~ntezt .~focal),

end fact paxameteral

Initial fOACt bass InIt....aCts..elarIthMs Is
(answer, unknown),
(contirnie-confirmed, no),

(aarior..oentext, system),
end initjfacts-.algorithn.,

inferencer sort-.Algorithms is
qrule bese i qrul*@_*ort..algorithms;
f rule bass s sorting..frules,

end sert-.algoritbims

SLIDE 118 declares some of the questions that the inferencer may ask users while they are
interacting with the inferencer.

page 77

February 1993 STA RS- UC-05156/020/00

quemtion base questionseortalgortitb= Is
question sortttyps...seleation Is

text 8 (Meleot type of sort algorithm, internal for sorting
an array for example, external for date on tap%..):

type s oneoft

responses I

"Internalu).> -(answer, unknown), (answer, Internal-sort)i

5zxternals a,, - (aswer, unknown), (answer, extesrzl&._ort):

"Don't knowm m3 -(answer, unknown), (answer, dont_.know)l

end question,

question giveup-.question is

text s (Ther,% is no further advice I can give without a

seleotion at this point.),
type s on.o_of$

responsest
gConfirma) ., (nohitn, no)D

ean question;
end qveýstionssort_algoritblS

Questions are posted to an agenda that is under the control of the AdaTAU inferencer engine
as a result of the execution of QRules. The structure of Qrules is illustrated in SLIDE 119.

Multiple AdaTAU inferencers may be declared to lie within an RLF model. Focus rules
(FRules) within individual inferencers direct the user's attention from place to place within
the model, deducing appropriate facts as these transfers of focus take place. An example of
such a rule is also shown in SLIDE 119.

Page 78

February 1993 STARS-UC-05156/020/00

qrulo basse qrules-sort.algorithis (qatestionssortalgorIthas) Is

q[ule *ort_ttype.seletion ts
anteaedent a (answer, unknown);
question a somrtyp*_Peeleotionj
weight 1 1,
justifioation a (Deterzine whether or not internal or

external sorting algorithm are desired.),
end qzuLe#

li119 qrule clarify-question Is
anteocedent i (answer, dont__now);
question t olazfy_questionj

weight I 1I
justification s (To give an explanation and. prompt for a

choice again.),
end qruleo

qrulo give_.up_quostion is
anteoedent a (answer, still.dontkwow)i
question t give_-upquestiong
weight 1 11

justifioation a (Car.not proceed without further input.)}
end qrule-

end qrules.sortalgorithmu,

frule beise lortingftulos is
frule Znternal-Znterest Is

Slide 120 antecedent t (answer, internal_sort)l
export s (prior._ontoxu, mortalgarithms)I
Coonis a Internal.sorts,
weight a 1;
Just:ification a (Since adviao on internal saoting algorithms

is desired, we will move there.)i
end f rule

end sorting-lruleal

The structure of an inferencer is directed to a&k the user appropriate questions about the
user's intentions with respect to the library assets w.•ich are stored in terms of the available
library model. The model builder structures questionf, and forms rules in each of the available
rule classes to elicit sufficient information from the user so that the user's attention is drawn
to assets that are likely to meet the users needs.

The last stage of the model building stages shown in this orientation package is the com-
plete Sort and Search Algorithms model including one inclusive LMDL file and fourteen

Page 79

February 1993 STARS- UC-05156/020/00

separate RBDL files. The complete text of these files is too large to include here. During
the orientation, the operation of a library based on this model was demonstrated.

A good place to begin to explore the RLF is to take the basic specification files discussed
here and elaborate them in various ways. In particular, additional inferencer specifications
can be provided that direct users to access the model to meet other user requirements.

Page 80

